Engineering Persister-Specific Antibiotics with Synergistic Antimicrobial Functions
نویسندگان
چکیده
Most antibiotics target growth processes and are ineffective against persister bacterial cells, which tolerate antibiotics due to their reduced metabolic activity. These persisters act as a genetic reservoir for resistant mutants and constitute a root cause of antibiotic resistance, a worldwide problem in human health. We re-engineer antibiotics specifically for persisters using tobramycin, an aminoglycoside antibiotic that targets bacterial ribosomes but is ineffective against persisters with low metabolic and cellular transport activity. By giving tobramycin the ability to induce nanoscopic negative Gaussian membrane curvature via addition of 12 amino acids, we transform tobramycin itself into a transporter sequence. The resulting molecule spontaneously permeates membranes, retains the high antibiotic activity of aminoglycosides, kills E. coli and S. aureus persisters 4-6 logs better than tobramycin, but remains noncytotoxic to eukaryotes. These results suggest a promising paradigm to renovate traditional antibiotics.
منابع مشابه
Selective target inactivation rather than global metabolic dormancy causes antibiotic tolerance in uropathogens.
Persister cells represent a multidrug-tolerant (MDT), physiologically distinct subpopulation of bacteria. The ability of these organisms to survive lethal antibiotic doses raises concern over their potential role in chronic disease, such as recurrent urinary tract infection (RUTI). Persistence is believed to be conveyed through global metabolic dormancy, which yields organisms unresponsive to e...
متن کاملTrans-translation mediates tolerance to multiple antibiotics and stresses in Escherichia coli.
BACKGROUND Trans-translation mediated by SsrA (tmRNA) and its associated protein SmpB plays an important role in rescuing stalled ribosomes and detoxifying toxic protein products under stress conditions. However, the role of SsrA and SmpB in bacterial persister survival has not been studied. The recent finding that pyrazinamide as a unique persister drug inhibits trans-translation in Mycobacter...
متن کاملSynergistic effect of Thymbra spicata L. extracts with antibiotics against multidrug- resistant Staphylococcus aureus and Klebsiella pneumoniae strains
Objective(s): To evaluate the in vitro interaction between different extracts of Thymbra spicata L. and certain antimicrobial drugs of different mechanisms, including ampicillin, cefotaxime, amikacin and ciprofloxacin. This study was performed against multidrug-resistant strains of Staphylococcus aureus and Klebsiella pneumoniae. Materials and Methods: Evaluation of antibacterial activity and ...
متن کاملGradual increase in antibiotic concentration affects persistence of Klebsiella pneumoniae.
OBJECTIVES Sublethal bactericidal antibiotics promote the formation of multidrug-tolerant persisters. Clinically, serum drug concentration increases gradually and reaches the peak level with high killing efficiency some time after administration. This study aimed to investigate if the initial low antibiotic concentration would promote persister formation in Klebsiella pneumoniae, an increasingl...
متن کاملEvaluation of the synergistic effect of tomatidine with several antibiotics against standard and clinical isolates of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli
Antibiotic resistance is an important problem in antibiotic treatment of infections, particularly in hospitals. Tomatidine is a plant secondary metabolite with antimicrobial and antifungal effects. This study examined the possible synergistic effect tomatidine with several antibiotics against standard and clinical strains of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014